
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 19 December 2021
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Homework 13 HS 22

Exercise Class (Room & TA):
Submitted by:
Peer Feedback by:
Points:

Submission: This exercise sheet is not to be turned in. The solutions will be published at the end of
the week, before Christmas.

Exercise 13.1 Shortest path with negative edge weights (part I).

Let G = (V,E,w) be a graph with edge weights w : E → Z \ {0} and wmin = mine∈E w(e).

Since Dijkstra’s algorithm must not be used whenever some edge weights are negative (i.e., wmin < 0),
one could come up with the idea of applying a transformation to the edge weight of every edge e ∈ E,
namely w′(e) = w(e)−wmin + 1, such that all weights become positive, and then �nd a shortest path
P in G by running Dijkstra with these new edge weights w′.

Show that this is not a good idea by providing an example graph G with a weight function w, such
that the above approach �nds a path P that is not a shortest path in G (this path P can start from the
vertex of your choice). The example graph should have exactly 5 nodes and not all weights should be
negative.

Exercise 13.2 Shortest path with negative edge weights (part II).

We consider the following graph:

1

3

2

4

5

6

1 2

4
1

4 - 4 2 5

1

3 1

5

1. What is the length of the shortest path from vertex 1 to vertex 6 ?

2. Consider Dijkstra’s algorithm (that fails here, because the graph has negative edge weights).
Which path length from vertex 1 to vertex 6 is Dijkstra computing? State the sets S, V \ S im-
mediately before Dijkstra is making its �rst error and explain in words what goes wrong.

3. Which e�cient algorithm can be used to compute a shortest path from vertex 1 to vertex 6 in the
given graph? What is the running time of this algorithm in general, expressed in n, the number
of vertices, and m, the number of edges ?

4. On the given graph, execute the algorithm by Floyd and Warshall to �nd all shortest paths. Ex-
press all entries of the (6 × 6 × 7)-table as 7 tables of size 6 × 6. (It is enough to state the path
length in the entry without the predecessor vertex.) Mark the entries in the table in which one
can see that the graph does not contain a negative cycle.

Exercise 13.3 Invariant and correctness of algorithm (This exercise is from the January 2020 ex-
am).

Given is a weighted directed acyclic graph G = (V,E,w), where V = {1, . . . , n}. The goal is to �nd
the length of the longest path in G.

Let’s �x some topological ordering of G and consider the array top[1, . . . , n] such that top[i] is a vertex
that is on the i-th position in the topological ordering.

Consider the following pseudocode

Algorithm 1 Find-length-of-longest-path(G, top)
L[1], . . . , L[n]← 0, . . . , 0
for i = 1, . . . , n do

v ← top[i]
L[v]← max

(u,v)∈E

{
L[u] + w

(
(u, v)

)}
return max

1≤i≤n
L[i]

Here we assume that maximum over the empty set is 0.

Show that the pseudocode above satis�es the following loop invariant INV(k) for 1 ≤ k ≤ n: After k
iterations of the for-loop, L[top[j]] contains the length of the longest path that ends with top[j] for all
1 ≤ j ≤ k.

Speci�cally, prove the following 3 assertions:

i) INV(1) holds.

ii) If INV(k) holds, then INV(k + 1) holds (for all 1 ≤ k < n).

iii) INV(n) implies that the algorithm correctly computes the length of the longest path.

State the running time of the algorithm described above in Θ-notation in terms of |V | and |E|. Justify
your answer.

Exercise 13.4 Cheap �ights (This exercise is from the January 2020 exam).

2

Suppose that there are n airports in the country Examistan. Between some of them there are direct
�ights. For each airport there exists at least one direct �ight from this airport to some other airport.
Totally there are m di�erent direct �ights between the airports of Examistan.

For each direct �ight you know its cost. The cost of each �ight is a strictly positive integer.

You can assume that each airport is represented by its number, i.e. the set of airports is {1, . . . , n}.

a) Model these airports, direct �ights and their costs as a directed graph: give a precise description of
the vertices, the edges and the weights of the edges of the graph G = (V,E,w) involved (if possible,
in words and not formal).

In points b) and c) you can assume that the directed graph is represented by a data structure that allows
you to traverse the direct predecessors and direct successors of a vertex u in time O(deg−(u)) and
O(deg+(u)) respectively, where deg−(u) is the in-degree of vertex u and deg+(u) is the out-degree of
vertex u.

b) Suppose that you are at the airport S and you want to �ll the array d of minimal traveling costs to
each airport. That is, for each airport A, d[A] is a minimal cost that you must pay to travel from S
to A.

Name the most e�cient algorithm that was discussed in lectures which solves the corresponding
graph problem. If several such algorithms were described in lectures (with the same running time),
it is enough to name one of them. State the running time of this algorithm in Θ-notation in terms
of n and m.

c) Now you want to know how many optimal routes there are to airport T . In other words, if cmin is
the minimal cost from S to T then you want to compute the number of routes from S to T of cost
cmin.

Assume that the array d from b) is already �lled. Provide an as e�cient as possible dynamic pro-
gramming algorithm that takes as input the graph G from task a), the array d from point b) and the
airports S and T , and outputs the number of routes from S to T of minimal cost.

Address the following aspects in your solution and state the running time of your algorithm:

1) De�nition of the DP table: What are the dimensions of the table DP [. . .] ? What is the meaning
of each entry ?

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps ?

4) Extracting the solution: How can the �nal solution be extracted once the table has been �lled ?

5) Running time: What is the running time of your algorithm ? Provide it in Θ-notation in terms
of n and m, and justify your answer.

3

Exercise 13.5 Elevator (This exercise is from the January 2022 exam).

Consider the following de�nitions for a directed graph G = (V,E):

1. The out-degree of a vertex v ∈ V , denoted with degout(v), is the number of edges of E that start
at v, i.e., degout(v) = |{(v, w) ∈ E | w ∈ V }|.

2. The in-degree of a vertex v ∈ V , denoted with degin(v), is the number of edges that end at v, i.e.,
degout(v) = |{(u, v) ∈ E | u ∈ V }|.

3. A Eulerian walk is a sequence v1, . . . , vk ∈ V such that k = |E| + 1 and {(vi, vi+1) | 1 ≤ i <
k} = E. Note that this de�nition implies (vi, vi+1) being di�erent edges for 1 ≤ i < k.

In this exercise, you can use without proof the following result from the lecture:

Lemma 1. A directed graph G = (V,E) admits a Eulerian walk if, and only if, all of the following
conditions holds:

1. At most one vertex v ∈ V is such that degout(v) = degin(v) + 1;

2. At most one vertex v ∈ V is such that degin(v) = degin(v) + 1;

3. Every vertex that satis�es neither (i) nor (ii) is such that degout(v) = degin(v);

4. The undirected graph G′ obtained by ignoring the direction of edges in G is connected.

a) Write down the pseudocode of an O(|V |+ |E|) time algorithm that takes as input a directed graph
G, and returns true if G has a Eulerian walk, and false otherwise. Justify its correctness and
complexity.

b) Alice is launching iFahrstuhl™, a start-up developing the next generation of elevators.

Assume a building with n �oors indexed from 1 to n and an elevator which has room for a single
person. The elevator receives requests in the form of pairs (i, j) ∈ {1, . . . , n}2 of distinct �oors
between which a single person is willing to travel.

Consider the scenario where m people want to use the elevator. For 1 ≤ t ≤ m, the t-th people want
to go from �oor it to �oor jt. These requests are given as a �nite set S = {(i1, j1), . . . , (im, jm)}.

A �nite set S = {(i1, j1), . . . , (im, jm)} of requests is called optimal if the pairs can be ordered such
that all requests can be processed and the elevator is never empty when moving between two �oors
(except maybe on its way to fetching the �rst person).

For example, for n = 5, the set S1 = {(2, 3), (4, 1), (3, 4)} is optimal, since it can ordered as
{(2, 3), (3, 4), (4, 1)}, which means that the elevator can start on �oor 2 to fetch person 1, go to
�oor 3, drop person 1 and fetch person 3, go to �oor 4, drop person 3 and fetch person 2, go to �oor
1, drop person 2, and terminate there. However, the set S2 = {(2, 3), (4, 1)} is not optimal, since
there is no way a single elevator can satisfy both requests without moving empty from �oor 3 to
�oor 4 or �oor 1 to �oor 2.

Given a set of requests S, Alice’s elevators should be able to decide whether it’s optimal. Model
the problem of detecting optimal sets of requests as a graph problem and provide an algorithm to
solve it. Describe the vertex and edge set, edge weights (if needed), the graph problem you solve,
the algorithm you use, and its complexity. To obtain full points, your algorithm should run in time
O(n + |S|).

c) Alice’s startup has installed k single-person elevators in your n-�oor building. Unfortunately, not
all elevators can reach all �oors. Hence, for each elevator j ∈ {1, . . . , k}, you are given a set Fj ⊆

4

{1, . . . , n} of �oors it can reach. When you arrive in front of an elevator j, say on �oor f ∈ Fj ,
you can immediately call it, after which you have to wait until it reaches your �oor from its current
position, moving at the constant speed of 1 time unit per �oor. When the elevator arrives, you choose
the destination �oor f ′ ∈ Fj , and the elevator brings you to this �oor at the constant speed of 0.5
time units per �oor (for security reasons, the elevator is slower when it is not empty). The time spent
moving between elevators on the same �oor, calling the elevator or choosing the destination �oor
is negligible, since you are very fast at interacting with elevators.

You are alone in the building at �oor 1, with each elevator j being initally located on �oor fj . You
would like to go to �oor n. What is the minimal amount of time that you have to travel using Alice’s
elevators? If you cannot reach �oor n, then output∞.

Model the problem as a graph problem and provide an algorithm to solve it. Describe the vertex
and edge set, edge weights (if needed), the graph problem you solve, the algorithm you use, and
its complexity. To obtain full points, your algorithm should run in time O((n + K) log n), where
K =

∑p
j=1|Fj |2.

d) Continue the setting of (c). Elevator doors in your building need maintenance, but the people in
your building also need elevators. In your building, there is exactly one elevator door per elevator
and �oor, which needs to be functional in order for the elevator to be used from or to this �oor. Even
if a door is not functional, the elevator can still be used between all other �oors where a functional
door is present. Alice wants to select as many elevator doors as possible to be maintained during
the next working day such that all �oors can be reached from each other using the elevators and
the remaining functional doors (those not in maintenance).

Model the problem as a graph problem and provide an algorithm to solve it. Describe the vertex
and edge set, edge weights (if needed), the graph problem you solve, the algorithm you use, and
its complexity. To obtain full points, your algorithm should run in time O((n + K ′) log(n + K ′)),
where K ′ =

∑p
j=1|Fj |.

Hint: Consider the set of vertices

V = {v1, . . . , vn} ∪ {w1, . . . ,wn} ∪ {elevator1, . . . , elevatorj}

and use subgraphs (“gadgets”) of the form

wi1

wi2

. . .

wiq

vi1

vi2

. . .

viq

elevatorj

0

0

0

1

1

1

where Fj = {i1, . . . , iq}.

5

